Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Sai-Rong Fan and Long-Guan Zhu*

Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China

Correspondence e-mail: chezlg@zju.edu.cn

## Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
H -atom completeness $77 \%$
Disorder in solvent or counterion
$R$ factor $=0.051$
$w R$ factor $=0.116$
Data-to-parameter ratio $=11.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The structure of the title compound, $\left\{\left[\mathrm{Cu}_{3}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{O}_{6} \mathrm{~S}\right)_{2^{-}}\right.\right.$ $\left.\left.\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, consists of centrosymmetric trinuclear $\left[\mathrm{Cu}_{3}(\text { ssal })_{2}(\text { phen })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ (phen is 1,10 -phenanthroline and ssal is the 5 -sulfonatosalicylate trianion) building units and non-coordinated water molecules. The central ( $\overline{1}$ site symmetry) Cu atom is octahedrally coordinated and the other unique Cu atom adopts a square-pyramidal geometry. The $\mu_{3^{-}}$ ssal ligands link trinuclear units into a chain running along the $a$ axis via bridging sulfonate groups. The chains are connected by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ bonds into a three-dimensional network.

## Comment

Metal complexes of the salicylate ion and its derivatives have been extensively studied from both structural and biological viewpoints (Zhu et al., 2002, 2003; Zhu \& Kitagawa, 2002). Our own recent work has focused on 5-sulfosalicylate metal complexes. Some of these, along with previously studied phases, contain the completely deprotonated 5 -sulfonatosalicylate (ssal ${ }^{3-}$ ) anion (Fan \& Zhu, 2005a,b,c; Fan et al., 2005; Marzotto et al., 2001; Sun et al., 1995; Wang, Zhang, Li et al., 2004; Wang, Zhang, Song \& Ju, 2004). However, there are only three complexes with trinuclear motifs, namely $\left[\mathrm{Cu}_{3}\left(2,2^{\prime}-\right.\right.$ bipy $\left.)_{2}(\mathrm{ssal})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$, (II) (Wang, Zhang, Li et al., 2004), $\left[\mathrm{Cu}_{3}(\mathrm{dpa})_{3}(\mathrm{ssal})_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$, (III) (Fan \& Zhu, 2005a), and $\left[\mathrm{Cu}_{3}(\mathrm{bz})_{6}(\mathrm{ssal})_{2}\right] \cdot 8 \mathrm{H}_{2} \mathrm{O}$, (IV) (Fan \& Zhu, 2005b) $\left(2,2^{\prime}\right.$-bipy is $2,2^{\prime}$-bipyridine, dpa is $2,2^{\prime}$-dipyridylamine and bz is benzimidazole). We present here the structure of the title compound, (I), which is another example of a $\mathrm{Cu}^{2+} / \mathrm{ssal}^{3-}$ complex with a trinuclear motif. The three previously reported copper complexes with trinuclear units are discussed in more detail by Fan \& Zhu (2005b).


Received 17 October 2005 Accepted 3 November 2005 Online 10 November 2005
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

## Poly[[diaquabis(1,10-phenanthroline)bis( $\mu_{3}-5-$ sulfonatosalicylato)tricopper(II)] tetrahydrate]



Figure 1
View of a segment of (I). Displacement ellipsoids are drawn at the $40 \%$ probability level. The minor disorder components are not shown. [Symmetry codes: (i) $-x, 1-y, 1-z$; (ii) $1+x, y, z$; (iii) $-1-x$, $1-y, 1-z$.]

The structure of (I) consists of centrosymmetric $\left[\mathrm{Cu}_{3}(\text { phen })_{2}(\text { ssal })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ (phen is 1,10 -phenanthroline) trinuclear components and uncoordinated water molecules. A segment of the structure of (I) is shown in Fig. 1. There are two crystallographically independent Cu atoms in the asymmetric unit. Atom Cu 2 occupies a special position (site symmetry $\overline{1}$ ), and has distorted octahedral coordination geometry defined by the four O atoms of two carboxylate groups and two O atoms of two water molecules. The other metal atom, Cu 1 , has a square-pyramidal geometry defined by the two N atoms of one phen ligand, and three O atoms from the carboxylate, phenolate and sulfonate groups of two ssal ${ }^{3-}$ ligands. The O atom of the sulfonate group from the neighbouring trinuclear unit occupies the apical position.

In the trinuclear unit of (I), the $\mathrm{Cu} 1 \cdots \mathrm{Cu} 2$ separation is 4.2493 (7) $\AA$, which is similar to the equivalent value of 4.2677 (6) $\AA$ in (II) but significantly smaller than the values of 4.6431 (5) and 4.6621 (6) $\AA$ for (III) and (IV), respectively. The $\mu_{3}$ ssal $^{3-}$ ligands link the trinuclear units into a onedimensional chain through sulfonate groups running along the $a$ axis. In the chain, the phen and ssal ${ }^{3-}$ ligands from a neighbouring trinuclear unit are nearly parallel, with a dihedral angle of $2.4(2)^{\circ}$, and interact by way of $\pi-\pi$ stacking with a centroid-centroid distance of about $3.50 \AA$. The structure is further consolidated into a three-dimensional framework by extensive $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding (Table 2).

## Experimental

A mixture of $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.041 \mathrm{~g}, 0.2 \mathrm{mmol})$, 5 -sulfosalicylic acid dihydrate $(0.050 \mathrm{~g}, 0.2 \mathrm{mmol})$ and 1,10 -phenanthroline $(0.021 \mathrm{~g}, 0.11 \mathrm{mmol})$ in an aqueous solution $(20 \mathrm{ml})$ was sealed in a 30 ml stainless steel reactor with a Teflon liner, then heated to 413 K and kept at this temperature for 24 h . Green block-shaped crystals of


Figure 2
View of the one-dimensional chain in (I). H atoms and non-coordinated water molecules have been omitted for clarity.
(I) were obtained after the vessel had cooled to room temperature. Analysis calculated for $\mathrm{C}_{38} \mathrm{H}_{34} \mathrm{Cu}_{3} \mathrm{~N}_{4} \mathrm{O}_{18} \mathrm{~S}_{2}$ : C 41.90, H 3.14, N 5.14\%; found: C 41.48, H 2.95 , N $4.66 \%$.

## Crystal data

$\left[\mathrm{Cu}_{3}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{O}_{6} \mathrm{~S}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}-\right.$
$\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=1089.43$
Monoclinic, $P 2_{1} / c$
$a=8.7183$ (9) $\AA$
$b=14.0994$ (16) $\AA$
$c=16.9212$ (18) $\AA$
$\beta=100.900(2)^{\circ}$
$V=2042.5$ (4) $\AA^{3}$
$Z=2$

## Data collection

Bruker SMART APEX CCD
diffractometer
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan (SADABS; Bruker, 2002)
$T_{\text {min }}=0.514, T_{\text {max }}=0.759$
10606 measured reflections

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.116$
$S=0.94$
3813 reflections
321 parameters

Table 1
Selected bond lengths ( $\AA$ ).

| $\mathrm{Cu} 1-\mathrm{O} 3$ | $1.887(3)$ | $\mathrm{Cu} 1-\mathrm{O} 4^{\mathrm{ii}}$ | $2.396(4)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{Cu} 1-\mathrm{O} 1$ | $1.926(3)$ | $\mathrm{Cu} 2-\mathrm{O} 2$ | $1.945(3)$ |
| $\mathrm{Cu} 1-\mathrm{N} 2$ | $2.001(4)$ | $\mathrm{Cu} 2-\mathrm{O} 7$ | $1.957(4)$ |
| $\mathrm{Cu} 1-\mathrm{N} 1$ | $2.013(4)$ | $\mathrm{Cu} 2-\mathrm{O} 1$ | $2.486(3)$ |

Symmetry code: (ii) $x+1, y, z$.

Table 2
Hydrogen-bond geometry ( $\AA{ }^{\circ},{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| O7-H7B $\cdots \mathrm{O}^{\text {ii }}$ | $0.84(4)$ | $1.86(5)$ | $2.694(5)$ | $167(5)$ |
| O7-H7A $\cdots$ O8 | $0.84(1)$ | $1.85(2)$ | $2.666(13)$ | $163(3)$ |
| O7-H7A $\cdots$ O8 $^{\prime}$ | $0.84(1)$ | $1.89(2)$ | $2.729(15)$ | $172(4)$ |

Symmetry code: (ii) $x+1, y, z$.

## metal-organic papers

All aromatic H atoms were positioned geometrically and refined as riding, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. Some of the water H atoms were located in difference Fourier maps and were refined with distance restraints of $\mathrm{O}-\mathrm{H}=0.85(1) \AA$ and fixed isotropic displacement parameters of $U_{\text {iso }}(\mathrm{H})=0.08 \AA^{2}$. Water molecules O8 and O9 are disordered over two positions and their occupancies (sum constrained to unity) were refined to 0.61 (6):0.39 (6) and 0.66 (6):0.34 (6), respectively. The H atoms associated with these species were not located in the present study.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We thank the Shanghai Institute of Organic Chemistry for the diffraction measurements, the National Natural Science Foundation of China (grant No. 50073019) and the Analytical and Measurement Fund of Zhejiang Province.

## References

Bruker (2002). SADABS (Version 2.03), SAINT (Version 6.02) and SMART (Version 5.62). Bruker AXS Inc., Madison, Wisconsin, USA.
Fan, S.-R., Cai, G.-Q., Zhu, L.-G. \& Xiao, H.-P. (2005). Acta Cryst. C61, m177m178.
Fan, S.-R. \& Zhu, L.-G. (2005a). Acta Cryst. E61, m174-m176.
Fan, S.-R. \& Zhu, L.-G. (2005b). Acta Cryst. E61, m2080-m2082.
Fan, S.-R. \& Zhu, L.-G. (2005c). Acta Cryst. E61, m2187-m2189.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Marzotto, A., Clemente, D. A., Gerola, T. \& Valle, G. (2001). Polyhedron, 20, 1079-1087.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sun, H.-Y., Huang, C.-H., Jin, X.-L. \& Xu, G.-X. (1995). Polyhedron, 14, 12011206.

Wang, W.-G., Zhang, J., Song, L.-J. \& Ju, Z.-F. (2004). Inorg. Chem. Commun. 7, 858-860.
Wang, X.-Q., Zhang, J., Li, Z.-J., Wen, Y.-H., Cheng, J.-K. \& Yao, Y.-G. (2004). Acta Cryst. C60, m657-m658.
Zhu, L.-G., Cai, G.-Q., Kitagawa, S. \& Chang, H. C. (2002). Chin. J. Inorg. Chem. 18, 911-914.
Zhu, L.-G. \& Kitagawa, S. (2002). J. Inorg. Organomet. Polym. 12, 23-29.
Zhu, L.-G., Kitagawa, S., Miyasaka, H. \& Chang, H. C. (2003). Inorg. Chim. Acta, 355, 121-126.

